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Abstract 

As the size of software systems increases, the algorithms and data structures of the com- 
putation no longer constitute the major design problems. When systems are constructed 
from many components, the organization of the overall system - the software architecture 
- presents a new set of design problems. This level of design has been addressed in a num- 
ber of ways including informal diagrams and descriptive terms, module interconnection 
languages, templates and frameworks for systems that serve the needs of specific domains, 
and formal models of component integration mechanisms. 

In this paper we provide an introduction to the emerging field of software architecture. We 
begin by considering a number of common architectural styles upon which many systems 
are currently based and show how different styles can be combined in a single design. Then 
we present six case studies to illustrate how architectural representations can improve our 
understanding of complex software systems. Finally, we survey some of the outstanding 
problems in the field, and consider a few of the promising research directions. 



1.   Introduction 

As the size and complexity of software systems increases, the design problem goes beyond 
the algorithms and data structures of the computation: designing and specifying the overall 
system structure emerges as a new kind of problem. Structural issues include gross organi- 
zation and global control structure; protocols for communication, synchronization, and data 
access; assignment of functionality to design elements; physical distribution; composition 
of design elements; scaling and performance; and selection among design alternatives. 

This is the software architecture level of design. There is a considerable body of 
work on this topic, including module interconnection languages, templates and frameworks 
for systems that serve the needs of specific domains, and formal models of component 
integration mechanisms. In addition, an implicit body of work exists in the form of 
descriptive terms used informally to describe systems. And while there is not currently a 
well-defined terminology or notation to characterize architectural structures, good software 
engineers make common use of architectural principles when designing complex software. 
Many of the principles represent rules of thumb or idiomatic patterns that have emerged 
informally over time. Others are more carefully documented as industry and scientific 
standards. 

It is increasingly clear that effective software engineering requires facility in architec- 
tural software design. First, it is important to be able to recognize common paradigms so 
that high-level relationships among systems can be understood and so that new systems can 
be built as variations on old systems. Second, getting the right architecture is often crucial 
to the success of a software system design; the wrong one can lead to disastrous results. 
Third, detailed understanding of software architectures allows the engineer to make prin- 
cipled choices among design alternatives. Fourth, an architectural system representation 
is often essential to the analysis and description of the high-level properties of a complex 
system. 

In this paper we provide an introduction to the field of software architecture. The purpose 
is to illustrate the current state of the discipline and examine the ways in which architectural 
design can impact software design. The material presented here is selected from a semester 
course, Architectures for Software Systems, taught at CMU by the authors [1]. Naturally, 
a short paper such as this can only briefly highlight the main features of the terrain. 
This selection emphasizes informal descriptions omitting much of the course's material on 
specification, evaluation, and selection among design alternatives. We hope, nonetheless, 
that this will serve to illuminate the nature and significance of this emerging field. 

In the following section we outline a number of common architectural styles upon which 
many systems are currently based, and show how heterogeneous styles can be combined in 
a single design. Next we use six case studies to illustrate how architectural representations 
of a software system can improve our understanding of complex systems. Finally, we 
survey some of the outstanding problems in the field, and consider a few of the promising 
research directions. 



The text that makes up the bulk of this article has been drawn from numerous other 
publications by the authors. The taxonomy of architectural styles and the case studies have 
incorporated parts of several published papers [1, 2, 3, 4]. To a lesser extent material has 
been drawn from other articles by the authors [5, 6, 7]. 

2.   From Programming Languages to Software Architecture 

One characterization of progress in programming languages and tools has been regular 
increases in abstraction level—or the conceptual size of software designers building blocks. 
To place the field of Software Architecture into perspective let us begin by looking at the 
historical development of abstraction techniques in computer science. 

2.1.     High-level Programming Languages 

When digital computers emerged in the 1950s, software was written in machine language; 
programmers placed instructions and data individually and explicitly in the computer's 
memory. Insertion of a new instruction in a program might require hand-checking of the 
entire program to update references to data and instructions that moved as a result of the 
insertion. Eventually it was recognized that the memory layout and update of references 
could be automated, and also that symbolic names could be used for operation codes, and 
memory addresses. Symbolic assemblers were the result. They were soon followed by 
macro processors, which allowed a single symbol to stand for a commonly-used sequence 
of instructions. The substitution of simple symbols for machine operation codes, machine 
addresses yet to be defined, and sequences of instructions was perhaps the earliest form of 
abstraction in software. 

In the latter part of the I950's, it became clear that certain patterns of execution were 
commonly useful—indeed, they were so well understood that it was possible to create them 
automatically from a notation more like mathematics than machine language. The first 
of these patterns were for evaluation of arithmetic expressions, for procedure invocation, 
and for loops and conditional statements. These insights were captured in a series of early 
high-level languages, of which Fortran was the main survivor. 

Higher-level languages allowed more sophisticated programs to be developed, and 
patterns in the use of data emerged. Whereas in Fortran data types served primarily as 
cues for selecting the proper machine instructions, data types in Algol and it successors 
serve to state the programmer's intentions about how data should be used. The compilers 
for these languages could build on experience with Fortran and tackle more sophisticated 
compilation problems. Among other things, they checked adherence to these intentions, 
thereby providing incentives for the programmers to use the type mechanism. 

Progress in language design continued with the introduction of modules to provide 
protection for related procedures and data structures, with the separation of a module's 
specification from its implementation, and with the introduction of abstract data types. 



2.2.     Abstract Data Types 

In the late 1960s, good programmers shared an intuition about software development: If 
you get the data structures right, the effort will make development of the rest of the program 
much easier. The abstract data type work of the 1970s can be viewed as a development 
effort that converted this intuition into a real theory. The conversion from an intuition to a 
theory involved understanding 

the software structure (which included a representation packaged with its primitive 
operators), 

specifications (mathematically expressed as abstract models or algebraic axioms), 

language issues (modules, scope, user-defined types), 

• 

• 

• integrity of the result (invariants of data structures and protection from other manip- 
ulation), 

• rules for combining types (declarations), 

• information hiding (protection of properties not explicitly included in specifications). 

The effect of this work was to raise the design level of certain elements of software systems, 
namely abstract data types, above the level of programming language statements or indi- 
vidual algorithms. This form of abstraction led to an understanding of a good organization 
for an entire module that serves one particular purpose. This involved combining repre- 
sentations, algorithms, specifications, and functional interfaces in uniform ways. Certain 
support was required from the programming language, of course, but the abstract data type 
paradigm allowed some parts of systems to be developed from a vocabulary of data types 
rather than from a vocabulary of programming-language constructs. 

2.3.     Soßware Architecture 

Just as good programmers recognized useful data structures in the late 1960's, good software 
system designers now recognize useful system organizations. One of these is based on the 
theory of abstract data types. But this is not the only way to organize a software system. 

Many other organizations have developed informally over time, and are now part of 
the vocabulary of software system designers. For example, typical descriptions of software 
architectures include synopses such as (italics ours): 

• "Camelot is based on the client-server model and uses remote procedure calls both 
locally and remotely to provide communication among applications and servers." [8] 

• "Abstraction layering and system decomposition provide the appearance of system 
uniformity to clients, yet allow Helix to accommodate a diversity of autonomous 
devices. The architecture encourages a client-server model for the structuring of 
applications." [9] 



• "We have chosen a distributed, object-oriented approach to managing information." 
[10] 

• "The easiest way to make the canonical sequential compiler into a concurrent compiler 
is to pipeline the execution of the compiler phases over a number of processors. 
... A more effective way [is to] split the source code into many segments, which 
are concurrently processed through the various phases of compilation [by multiple 
compiler processes] before a final, merging pass recombines the object code into a 
single program." [11] 

Other software architectures are carefully documented and often widely disseminated. 
Examples include the International Standard Organization's Open Systems Interconnection 
Reference Model (a layered network architecture) [12], the NIST/ECMA Reference Model 
(a generic software engineering environment architecture based on layered communication 
substrates) [13, 14], and the X Window System (a distributed windowed user interface 
architecture based on event triggering and callbacks) [15]. 

We are still far from having a well-accepted taxonomy of such architectural paradigms, 
let alone a fully-developed theory of software architecture. But we can now clearly identify 
a number of architectural patterns, or styles, that currently form the basic repertoire of a 
software architect. 

3.   Common Architectural Styles 

We now examine some of these representative, broadly-used architectural styles. Our 
purpose is to illustrate the rich space of architectural choices, and indicate what are some 
of the tradeoffs in choosing one style over another. 

To make sense of the differences between styles, it helps to have a common framework 
from which to view them. The framework we will adopt is to treat an architecture of a 
specific system as a collection of computational components—or simply components— 
together with a description of the interactions between these components—the connectors. 
Graphically speaking, this leads to a view of an abstract architectural description as a graph 
in which the nodes represent the components and the arcs represent the connectors. As we 
will see, connectors can represent interactions as varied as procedure call, event broadcast, 
database queries, and pipes. 

An architectural style, then, defines a family of such systems in terms of a pattern of 
structural organization. More specifically, an architectural style determines the vocabulary 
of components and connectors that can be used in instances of that style, together with a 
set of constraints on how they can be combined. These can include topological constraints 
on architectural descriptions (e.g., no cycles). Other constraints—say, having to do with 
execution semantics—might also be part of the style definition. 

Given this framework, we can understand what a style is by answering the following 
questions: What is the structural pattern—the components, connectors, and constraints? 
What is the underlying computational model? What are the essential invariants of the style? 



Filters 

Pipes 

Figure 1: Pipes and Filters 

What are some common examples of its use? What are the advantages and disadvantages 
of using that style? What are some of the common specializations? 

3.1.     Pipes and Filters 

In a pipe and filter style each component has a set of inputs and a set of outputs. A component 
reads streams of data on its inputs and produces streams of data on its outputs, delivering 
a complete instance of the result in a standard order. This is usually accomplished by 
applying a local transformation to the input streams and computing incrementally so output 
begins before input is consumed. Hence components are termed "filters". The connectors 
of this style serve as conduits for the streams, transmitting outputs of one filter to inputs of 
another. Hence the connectors are termed "pipes". 

Among the important invariants of the style, filters must be independent entities: in 
particular, they should not share state with other filters. Another important invariant is 
that filters do not know the identity of their upstream and downstream filters. Their 
specifications might restrict what appears on the input pipes or make guarantees about what 
appears on the output pipes, but they may not identify the components at the ends of those 
pipes. Furthermore, the correctness of the output of a pipe and filter network should not 
depend on the order in which the filters perform their incremental processing—although 
fair scheduling can be assumed. (See [5] for an in-depth discussion of this style and its 
formal properties.) Figure 1 illustrates this style. 

Common specializations of this style include pipelines, which restrict the topologies to 
linear sequences of filters; bounded pipes, which restrict the amount of data that can reside 
on a pipe; and typed pipes, which require that the data passed between two filters have a 
well-defined type. 

A degenerate case of a pipeline architecture occurs when each filter processes all of its 
input data as a single entity.1  In this case the architecture becomes a "batch sequential" 

'In general, we find that the boundaries of styles can overlap. This should not deter us from identifying 
the main features of a style with its central examples of use. 



system. In these systems pipes no longer serve the function of providing a stream of data, 
and therefore are largely vestigial. Hence such systems are best treated as instances of a 
separate architectural style. 

The best known examples of pipe and filter architectures are programs written in the 
Unix shell [16]. Unix supports this style by providing a notation for connecting components 
(represented as Unix processes) and by providing run time mechanisms for implementing 
pipes. As another well-known example, traditionally compilers have been viewed as a 
pipeline systems (though the phases are often not incremental). The stages in the pipeline 
include lexical analysis, parsing, semantic analysis, code generation. (We return to this 
example in the case studies.) Other examples of pipes and filters occur in signal processing 
domains [17], functional programming [18], and distributed systems [19]. 

Pipe and filter systems have a number of nice properties. First, they allow the designer 
to understand the overall input/output behavior of a system as a simple composition of 
the behaviors of the individual filters. Second, they support reuse: any two filters can 
be hooked together, provided they agree on the data that is being transmitted between 
them. Third, systems can be easily maintained and enhanced: new filters can be added 
to existing systems and old filters can be replaced by improved ones. Fourth, they permit 
certain kinds of specialized analysis, such as throughput and deadlock analysis. Finally, 
they naturally support concurrent execution. Each filter can be implemented as a separate 
task and potentially executed in parallel with other filters. 

But these systems also have their disadvantages.2 First, pipe and filter systems often 
lead to a batch organization of processing. Although filters can process data incrementally, 
since filters are inherently independent, the designer is forced to think of each filter as 
providing a complete transformation of input data to output data. In particular, because of 
their transformational character, pipe and filter systems are typically not good at handling 
interactive applications. This problem is most severe when incremental display updates are 
required, because the output pattern for incremental updates is radically different from the 
pattern for filter output. Second, they may be hampered by having to maintain correspon- 
dences between two separate, but related streams. Third, depending on the implementation, 
they may force a lowest common denominator on data transmission, resulting in added 
work for each filter to parse and unparse its data. This, in turn, can lead both to loss of 
performance and to increased complexity in writing the filters themselves. 

3.2.     Data Abstraction and Object-Oriented Organization 

In this style data representations and their associated primitive operations are encapsulated 
in an abstract data type or object. The components of this style are the objects—or, if you 
will, instances of the abstract data types. Objects are examples of a sort of component 
we call a manager because it is responsible for preserving the integrity of a resource 
(here the representation).   Objects interact through function and procedure invocations. 

2This is true in spite of the fact that pipes and filters, like every style, has a set of devout religious followers 
- people who believe that all problems worth solving can best be solved using that particular style. 
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Figure 2: Abstract Data Types & Objects 

Two important aspects of this style are (a) that an object is responsible for preserving the 
integrity of its representation (usually by maintaining some invariant over it), and (b) that 
the representation is hidden from other objects. Figure 2 illustrates this style.3 

The use of abstract data types, and increasingly the use of object-oriented systems, 
is, of course, widespread. There are many variations. For example, some systems allow 
"objects" to be concurrent tasks; others allow objects to have multiple interfaces [20, 21]. 

Object-oriented systems have many nice properties, most of which are well known. 
Because an object hides its representation from its clients, it is possible to change the 
implementation without affecting those clients. Additionally, the bundling of a set of 
accessing routines with the data they manipulate allows designers to decompose problems 
into collections of interacting agents. 

But object-oriented systems also have some disadvantages. The most significant is that 
in order for one object to interact with another (via procedure call) it must know the identity 
of that other object. This is in contrast, for example, to pipe and filter systems, where 
filters do need not know what other filters are in the system in order to interact with them. 
The significance of this is that whenever the identity of an object changes it is necessary 
to modify all other objects that explicitly invoke it. In a module-oriented language this 
manifests itself as the need to change the "import" list of every module that uses the changed 
module. Further there can be side-effect problems: if A uses object B and C also uses B, 
then C's effects on B look like unexpected side effects to A, and vice versa. 

3We haven't mentioned inheritance in this description. While inheritance is an important organizing 
principle for defining the types of objects in a system, it does not have a direct architectural function. In 
particular, in our view, an inheritance relationship is not a connector, since it does not define the interaction 
between components in a system. Also, in an architectural setting inheritance of properties is not restricted 
to object types—but may include connectors and even architectural styles. 



3.3.     Event-baaed, Implicit Invocation 

Traditionally, in a system in which the component interfaces provide a collection of pro- 
cedures and functions, components interact with each other by explicitly invoking those 
routines. However, recently there has been considerable interest in an alternative integration 
technique, variously referred to as implicit invocation, reactive integration, and selective 
broadcast. This style has historical roots in systems based on actors [22], constraint satis- 
faction, daemons, and packet-switched networks. 

The idea behind implicit invocation is that instead of invoking a procedure directly, 
a component can announce (or broadcast) one or more events. Other components in the 
system can register an interest in an event by associating a procedure with the event. 
When the event is announced the system itself invokes all of the procedures that have been 
registered for the event. Thus an event announcement "implicitly" causes the invocation of 
procedures in other modules. 

For example, in the Field system [23], tools such as editors and variable monitors register 
for a debugger's breakpoint events. When a debugger stops at a breakpoint, it announces 
an event that allows the system to automatically invoke methods in those registered tools. 
These methods might scroll an editor to the appropriate source line or redisplay the value 
of monitored variables. In this scheme, the debugger simply announces an event, but does 
not know what other tools (if any) are concerned with that event, or what they will do when 
that event is announced. 

Architecturally speaking, the components in an implicit invocation style are modules 
whose interfaces provide both a collection of procedures (as with abstract data types) and a 
set of events. Procedures may be called in the usual way. But in addition, a component can 
register some of its procedures with events of the system. This will cause these procedures 
to be invoked when those events are announced at run time. Thus the connectors in an 
implicit invocation system include traditional procedure call as well as bindings between 
event announcements and procedure calls. 

The main invariant of this style is that announcers of events do not know which 
components will be affected by those events. Thus components cannot make assumptions 
about order of processing, or even about what processing, will occur as a result of their 
events. For this reason, most implicit invocation systems also include explicit invocation 
(i.e., normal procedure call) as a complementary form of interaction. 

Examples of systems with implicit invocation mechanisms abound [7]. They are used 
in programming environments to integrate tools [24, 23], in database management systems 
to ensure consistency constraints [22,25], in user interfaces to separate presentation of data 
from applications that manage the data [26, 27], and by syntax-directed editors to support 
incremental semantic checking [28, 29]. 

One important benefit of implicit invocation is that it provides strong support for reuse. 
Any component can be introduced into a system simply by registering it for the events 
of that system. A second benefit is that implicit invocation eases system evolution [30]. 
Components may be replaced by other components without affecting the interfaces of other 
components in the system. 

8 



The primary disadvantage of implicit invocation is that components relinquish control 
over the computation performed by the system. When a component announces an event, it 
has no idea what other components will respond to it. Worse, even if it does know what 
other components are interested in the events it announces, it cannot rely on the order in 
which they are invoked. Nor can it know when they are finished. Another problem concerns 
exchange of data. Sometimes data can be passed with the event. But in other situations event 
systems must rely on a shared repository for interaction. In these cases global performance 
and resource management can become a serious issue. Finally, reasoning about correctness 
can be problematic, since the meaning of a procedure that announces events will depend on 
the context of bindings in which it is invoked. This is in contrast to traditional reasoning 
about procedure calls, which need only consider a procedure's pre- and post-conditions 
when reasoning about an invocation of it. 

3.4'     Layered Systems 

A layered system is organized hierarchically, each layer providing service to the layer 
above it and serving as a client to the layer below. In some layered systems inner layers 
are hidden from all except the adjacent outer layer, except for certain functions carefully 
selected for export. Thus in these systems the components implement a virtual machine 
at some layer in the hierarchy. (In other layered systems the layers may be only partially 
opaque.) The connectors are defined by the protocols that determine how the layers will 
interact. Topological constraints include limiting interactions to adjacent layers. Figure 3 
illustrates this style. 

The most widely known examples of this kind of architectural style are layered com- 
munication protocols [31]. In this application area each layer provides a substrate for 
communication at some level of abstraction. Lower levels define lower levels of interac- 
tion, the lowest typically being defined by hardware connections. Other application areas 
for this style include database systems and operating systems [32, 9, 33]. 

Layered systems have several desirable properties. First, they support design based on 
increasing levels of abstraction. This allows implementors to partition a complex problem 
into a sequence of incremental steps. Second, they support enhancement. Like pipelines, 
because each layer interacts with at most the layers below and above, changes to the function 
of one layer affect at most two other layers. Third, they support reuse. Like abstract data 
types, different implementations of the same layer can be used interchangeably, provided 
they support the same interfaces to their adjacent layers. This leads to the possibility of 
defining standard layer interfaces to which different implementors can build. (A good 
example is the OSI ISO model and some of the X Window System protocols.) 

But layered systems also have disadvantages. Not all systems are easily structured 
in a layered fashion. (We will see an example of this later in the case studies.) And 
even if a system can logically be structured as layers, considerations of performance 
may require closer coupling between logically high-level functions and their lower-level 
implementations. Additionally, it can be quite difficult to find the right levels of abstraction. 
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Figure 3: Layered Systems 

This is particularly true for standardized layered models. One notes that the communications 
community has had some difficulty mapping existing protocols into the ISO framework: 
many of those protocols bridge several layers. 

3.5.     Repositories 

In a repository style there are two quite distinct kinds of components: a central data 
structure represents the current state, and a collection of independent components operate 
on the central data store. Interactions between the repository and its external components 
can vary significantly between systems. 

The choice of control discipline leads to major subcategories. If the types of transactions 
in an input stream of transactions trigger selection of processes to execute, the repository 
can be a traditional database. If the current state of the central data structure is the main 
trigger of selecting processes to execute, the repository can be a blackboard. 

Figure 4 illustrates a simple view of a blackboard architecture. (We will examine more 
detailed models in the case studies.) The blackboard model is usually presented with three 
major parts: 

The knowledge sources: separate, independent parcels of application-dependent knowl- 
edge. Interaction among knowledge sources takes place solely through the black- 
board. 

10 
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Figure 4: The Blackboard 

The blackboard data structure: problem-solving state data, organized into an application- 
dependent hierarchy. Knowledge sources make changes to the blackboard that lead 
incrementally to a solution to the problem. 

Control: driven entirely by state of blackboard. Knowledge sources respond opportunis- 
tically when changes in the blackboard make them applicable. 

In the diagram there is no explicit representation of the control component. Invocation 
of a knowledge source is triggered by the state of the blackboard. The actual locus of 
control, and hence its implementation, can be in the knowledge sources, the blackboard, a 
separate module, or some combination of these. 

Blackboard systems have traditionally been used for applications requiring complex 
interpretations of signal processing, such as speech and pattern recognition. Several of 
these are surveyed by Nii [34], They have also appeared in other kinds of systems that 
involve shared access to data with loosely coupled agents [35]. 

There are, of course, many other examples of repository systems. Batch-sequential 
systems with global databases are a special case. Programming environments are often or- 
ganized as a collection of tools together with a shared repository of programs and program 
fragments [36]. Even applications that have been traditionally viewed as pipeline archi- 
tectures, may be more accurately interpreted as repository systems. For example, as we 
will see later, while a compiler architecture has traditionally been presented as a pipeline, 
the "phases" of most modern compilers operate on a base of shared information (symbol 
tables, abstract syntax tree, etc.). 
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3.6. Table Driven Interpreters 

In an interpreter organization a virtual machine is produced in software. An interpreter 
includes the pseudo-program being interpreted and the interpretation engine itself. The 
pseudo-program includes the program itself and the interpreter's analog of its execution 
state (activation record). The interpretation engine includes both the definition of the 
interpreter and the current state of its execution. Thus an interpreter generally has four 
components: an interpretation engine to do the work, a memory that contains the pseudo- 
code to be interpreted, a representation of the control state of the interpretation engine, and 
a representation of the current state of the program being simulated. (See Figure 5.) 

Interpreters are commonly used to build virtual machines that close the gap between 
the computing engine expected by the semantics of the program and the computing engine 
available in hardware. We occasionally speak of a programming language as providing, 
say, a "virtual Pascal machine." 

We will return to interpreters in more detail in the case studies. 

3.7. Other Familiar Architectures 

There are numerous other architectural styles and patterns. Some are widespread and others 
are specific to particular domains. While a complete treatment of these is beyond the scope 
of this paper, we briefly note a few of the important categories. 
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• Distributed processes: Distributed systems have developed a number of common 
organizations for multi-process systems [37]. Some can be characterized primarily 
by their topological features, such as ring and star organizations. Others are bet- 
ter characterized in terms of the kinds of inter-process protocols that are used for 
communication (e.g., heartbeat algorithms). 

One common form of distributed system architecture is a "client-server" organiza- 
tion [38]. In these systems a server represents a process that provides services to other 
processes (the clients). Usually the server does not know in advance the identities 
or number of clients that will access it at run time. On the other hand, clients know 
the identity of a server (or can find it out through some other server) and access it by 
remote procedure call. 

• Main program/subroutine organizations: The primary organization of many sys- 
tems mirrors the programming language in which the system is written. For languages 
without support for modularization this often results in a system organized around a 
main program and a set of subroutines. The main program acts as the driver for the 
subroutines, typically providing a control loop for sequencing through the subroutines 
in some order. 

• Domain-specific software architectures: Recently there has been considerable in- 
terest in developing "reference" architectures for specific domains [39]. These archi- 
tectures provide an organizational structure tailored to a family of applications, such 
as avionics, command and control, or vehicle management systems. By specializing 
the architecture to the domain, it is possible to increase the descriptive power of 
structures. Indeed, in many cases the architecture is sufficiently constrained that an 
executable system can be generated automatically or semi-automatically from the 
architectural description itself. 

• State transition systems: A common organization for many reactive systems is the 
state transition system [40]. These systems are defined in terms a set of states and a 
set of named transitions that move a system from one state to another. 

• Process control systems: Systems intended to provide dynamic control of a physical 
environment are often organized as process control systems [41]. These systems are 
roughly characterized as a feedback loop in which inputs from sensors are used by 
the process control system to determine a set of outputs that will produce a new state 
of the environment. 

3.8.     Heterogeneous Architectures 

Thus far we have been speaking primarily of "pure" architectural styles. While it is 
important to understand the individual nature of each of these styles, most systems typically 
involve some combination of several styles. 
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There are different ways in which architectural styles can be combined. One way is 
through hierarchy. A component of a system organized in one architectural style may 
have an internal structure that is developed a completely different style. For example, in a 
Unix pipeline the individual components may be represented internally using virtually any 
style—including, of course, another pipe and filter system. 

What is perhaps more surprising is that connectors, too, can often be hierarchically 
decomposed. For example, a pipe connector may be implemented internally as a FIFO 
queue accessed by insert and remove operations. 

A second way for styles to be combined is to permit a single component to use a mixture 
of architectural connectors. For example, a component might access a repository through 
part of its interface, but interact through pipes with other components in a system, and 
accept control information through another part of its interface. (In fact, Unix pipe and 
filter systems do this, the file system playing the role of the repository and initialization 
switches playing the role of control.) 

Another example is an "active database". This is a repository which activates external 
components through implicit invocation. In this organization external components register 
interest in portions of the database. The database automatically invokes the appropriate 
tools based on this association. 

A third way for styles to be combined is to completely elaborate one level of architectural 
description in a completely different architectural style. We will see examples of this in the 
case studies. 

4.    Case Studies 

We now present six examples to illustrate how architectural principles can be used to 
increase our understanding of software systems. The first example shows how different 
architectural solutions to the same problem provide different benefits. The second case study 
summarizes experience in developing a a domain-specific architectural style for a family of 
industrial products. The third case study examines the familiar compiler architecture in a 
fresh light. The remaining three case studies present examples of the use of heterogeneous 
architectures. 

4.1.     Case Study 1: Key Word in Context 

In his paper of 1972, Parnas proposed the following problem [42]: 

The KWIC [Key Word in Context] index system accepts an ordered set of 
lines, each line is an ordered set of words, and each word is an ordered set of 
characters. Any line may be "circularly shifted" by repeatedly removing the 
first word and appending it at the end of the line. The KWIC index system 
outputs a listing of all circular shifts of all lines in alphabetical order. 
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Parnas used the problem to contrast different criteria for decomposing a system into 
modules. He describes two solutions, one based on functional decomposition with shared 
access to data representations, and a second based on a decomposition that hides design 
decisions. Since its introduction, the problem has become well-known and is widely used as 
a teaching device in software engineering. Garlan, Kaiser, and Notkin also use the problem 
to illustrate modularization schemes based on implicit invocation [7]. 

While KWIC can be implemented as a relatively small system it is not simply of 
pedagogical interest. Practical instances of it are widely used by computer scientists. For 
example, the "permuted" [sic] index for the Unix Man pages is essentially such a system. 

From the point of view of software architecture, the problem derives its appeal from 
the fact that it can be used to illustrate the effect of changes on software design. Parnas 
shows that different problem decompositions vary greatly in their ability to withstand design 
changes. Among the changes he considers are: 

• Changes in processing algorithm: For example, line shifting can be performed on 
each line as it is read from the input device, on all the lines after they are read, or on 
demand when the alphabetization requires a new set of shifted lines. 

• Changes in data representation: For example, lines can be stored in various ways.. 
Similarly, circular shifts can be stored explicitly or implicitly (as pairs of index and 
offset). 

Garlan, Kaiser, and Notkin, extend Parnas' analysis by considering: 

• Enhancement to system function: For example, modify the system so that shifted 
lines to eliminate circular shifts that start with certain noise words (such as "a", "an", 
"and", etc.). Change the system to be interactive, and allow the user to delete lines 
from the original (or, alternatively, from circularly shifted) lists. 

• Performance: Both space and time. 

• Reuse: To what extent can the components serve as reusable entities. 

We now outline four architectural designs for the KWIC system. All four are grounded 
in published solutions (including implementations). The first two are those considered in 
Parnas' original article. The third solution is based on the use of an implicit invocation 
style and represents a variant on the solution examined by Garlan, Kaiser, and Notkin. The 
fourth is a pipeline solution inspired by the Unix index utility. 

After presenting each solution and briefly summarizing its strengths and weakness, we 
contrast the different architectural decompositions in a table organized along the five design 
dimensions itemized above. 

Solution 1: Main Program/Subroutine with Shared Data 

The first solution decomposes the problem according to the four basic functions performed: 
input, shift, alphabetize, and output. These computational components are coordinated as 
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Figure 6: KWIC - Shared Data Solution 

subroutines by a main program that sequences through them in turn. Data is communicated 
between the components through shared storage ("core storage"). Communication between 
the computational components and the shared data is an unconstrained read-write protocol. 
This is made possible by the fact that the coordinating program guarantees sequential access 
to the data. (See Figure 6.) 

Using this solution data can be represented efficiently, since computations can share the 
same storage. The solution also has a certain intuitive appeal, since distinct computational 
aspects are isolated in different modules. 

However, as Parnas argues, it has a number of serious drawbacks in terms of its ability 
to handle changes. In particular, a change in data storage format will affect almost all of 
the modules. Similarly changes in the overall processing algorithm and enhancements to 
system function are not easily accomodated. Finally, this decomposition is not particularly 
supportive of reuse. 

Solution 2: Abstract Data Types 

The second solution decomposes the system into a similar set of five modules. However, in 
this case data is no longer directly shared by the computational components. Instead, each 
module provides an interface that permits other components to access data only by invoking 
procedures in that interface. (See Figure 7, which illustrates how each of the components 
now has a set of procedures that determine the form of access by other components in the 
system.) 
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This solution provides the same logical decomposition into processing modules as the 
first. However, it has a number of advantages over the first solution when design changes 
are considered. In particular, both algorithms and data representations can be changed in 
individual modules without affecting others. Moreover, reuse is better supported than in 
the first solution because modules make fewer assumptions about the others with which 
they interact. 

On the other hand, as discussed by Garlan, Kaiser, and Notkin, the solution is not 
particularly well-suited to enhancements. The main problem is that to add new functions to 
the system, the implementor must either modify the existing modules - compromising their 
simplicity and integrity - or add new modules that lead to performance penalties. (See [7] 
for a detailed discussion.) 

Solution 3: Implicit Invocation 

The third solution uses a form of component integration based on shared data similar to the 
first solution. However, there are two important differences. First, the interface to the data 
is more abstract. Rather than exposing the storage formats to the computing modules, data 
is accessed abstractly (for example, as a list or a set). Second, computations are invoked 
implicitly as data is modified. Thus interaction is based on an active data model. For 
example, the act of adding a new line to the line storage causes an event to be sent to the 
shift module. This allows it to produce circular shifts (in a separate abstract shared data 
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Figure 8: KWIC - Implicit Invocation Solution 

store). This in turn causes the alphabetizer to be implicitly invoked so that it can alphabetize 
the lines. 

This solution easily supports functional enhancements to the system: additional modules 
can be attached to the system by registering them to be invoked on data-changing events. 
Because data is accessed abstractly, it also insulates computations from changes in data 
representation. Reuse is also supported, since the implicitly invoked modules only rely on 
the existence of certain externally triggered events. 

However, the solution suffers from the fact that it can be difficult to control the order of 
processing of the implicitly invoked modules. Further, because invocations are data driven, 
the most natural implementations of this kind of decomposition tend to use more space than 
the previously considered decompositions. 

Solution 4: Pipes and Filters 

The fourth solution uses a pipeline solution. In this case there are four filters: input, shift, 
alphabetize, and output. Each filter processes the data and sends it to the next filter. Control 
is distributed: each filter can run whenever it has data on which to compute. Data sharing 
between filters is strictly limited to that transmitted on pipes. (See Figure 9.) 

This solution has several nice properties. First, it maintains the intuitive flow of 
processing. Second, it supports reuse, since each filter can function in isolation (provided 
upstream filters produce data in the form it expects). New functions are easily added to 
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the system by inserting filters at the appropriate point in the processing sequence. Third, it 
supports ease of modification, since filters are logically independent of other filters. 

On the other hand it has a number of drawbacks. First, it is virtually impossible to 
modify the design to support an interactive system. For example, in order to delete a 
line, there would have to be some persistent shared storage, violating a basic tenet of this 
approach. Second, the solution is inefficient in terms of its use of space, since each filter 
must copy all of the data to its output ports. 

Comparisons 

The solutions can be compared by tabulating their ability to address the design consider- 
ations itemized earlier. A detailed comparison would have to involve consideration of a 
number of factors concerning the intended use of the system: for example, is it batch or 
interactive, update-intensive or query-intensive, etc. 

Figure 10 provides an approximation to such an analysis, based on the discussion of 
architectural styles introduced earlier. As Parnas pointed out, the shared data solution 
is particularly weak in its support for changes in the overall processing algorithm, data 
representations, and reuse. On the other hand it can achieve relatively good performance, 
by virtue of direct sharing of data. Further, it is relatively easy to add a new processing 
component (also accessing the shared data). The abstract data type solution allows changes 
to data representation and supports reuse', without necessarily compromising performance. 
However, the interactions between components in that solution are wired into the modules 
themselves, so changing the overall processing algorithm or adding new functions may 
involve a large number of changes to the existing system. 

The implicit invocation solution is particularly good for adding new functionality. 
However, it suffers from some of the problems of the shared data approach: poor support 
for change in data representation and reuse. Moreover, it may introduce extra execution 
overhead. The pipe and filter solution allows new filters to be placed in the stream of text 
processing. Therefore it supports changes in processing algorithm, changes in function, 
and reuse. On the other hand, decisions about data representation will be wired into the 
assumptions about the kind of data that is transmitted along the pipes. Further, depending on 
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the exchange format, there may be additional overhead involved in parsing and unparsing 
the data onto pipes. 

4.2.     Case Study 2: Instmmentation Software 

Our second case study describes the industrial development of a software architecture at 
Tektronix, Inc. This work was carried out as a collaborative effort between several Tektronix 
product divisions and the Computer Research Laboratory over a three year period [6]. 

The purpose of the project was to develop a reusable system architecture for oscillo- 
scopes. An oscilloscope is an instrumentation system that samples electrical signals and 
displays pictures (called traces) of them on a screen. Additionally, oscilloscopes perform 
measurements on the signals, and also display these on the screen. While oscilloscopes 
were once simple analogue devices involving little software, modern oscilloscopes rely 
primarily on digital technology and have quite complex software. It is not uncommon for 
a modern oscilloscope to perform dozens of measurements, supply megabytes of internal 
storage, interface to a network of workstations and other instruments, and provide sophisti- 
cated user interface including a touch panel screen with menus, built-in help facilities, and 
color displays. 

Like many companies that have had to rely increasingly on software to support their 
products, Tektronix was faced with number of problems. First, there was little reuse across 
different oscilloscope products. Instead, different oscilloscopes were built by different 
product divisions, each with their own development conventions, software organization, 
programming language, and development tools. Moreover, even within a single product 
division, each new oscilloscope typically required a redesign from scratch to accommodate 
changes in hardware capability and new requirements on the user interface. This problem 
was compounded by the fact that both hardware and interface requirements were changing 
increasingly rapidly. Furthermore, there was a perceived need to address "specialized 
markets". To do this it would have to be possible to tailor a general-purpose instrument, to 
a specific set of uses. 

Second, there were increasing performance problems because the software was not 
rapidly configurable within the instrument. This problem arises because an oscilloscope can 
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Figure 11: Oscilloscopes - An Object-oriented Model 

be configured in many different modes, depending on the user's task. In old oscilloscopes 
reconfiguration was handled simply by loading different software to handle the new mode. 
But as the total size of software was increasing, this was leading to delays between a user's 
request for a new mode and a reconfigured instrument. 

The goal of the project was to develop an architectural framework for oscilloscopes 
that would address these problems. The result of that work was a domain-specific software 
architecture that formed the basis of the next generation of Tektronix oscilloscopes. Since 
then the framework has been extended and adapted to accommodate a broader class of 
system, while at the same time being better adapted to the specific needs of instrumentation 
software. 

In the remainder of this section, we outline the stages in this architectural development. 

An object-oriented model 

The first attempt at developing a reusable architecture focused on producing an object- 
oriented model of the software domain. This led to a clarification of the data types used in 
oscilloscopes: waveforms, signals, measurements, trigger modes, etc. (See Figure 11.) 

While this was a useful exercise, tf fell far short of producing the hoped-for results. 
Although many types of data were identified, there was no overall model that explained 
how the types fit together. This led to confusion about the partitioning of functionality. 
For example, should measurements be associated with the types of data being measured, or 
represented externally? Which objects should the user interface talk to? 

A layered model 

The second phase attempted to correct these problems by providing a layered model of 
an oscilloscope. (See Figure 11.) In this model the core layer represented the signal 
manipulation functions that filter signals as they enter the oscilloscope. These functions 
are typically implemented in hardware. The next layer represented waveform acquisition. 
Within this layer signals are digitized and stored internally for later processing. The third 
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Figure 12: Oscilloscopes - A Layered Model 

layer consisted of waveform manipulation, including measurement, waveform addition, 
Fourier transformation, etc. The fourth layer consisted of display functions. This layer was 
responsible for mapping digitized waveforms and measurements to visual representations. 
The outermost layer was the user interface. This layer was responsible for interacting with 
the user and for deciding which data should be shown on the screen. (See Figure 12.) 

This layered model was intuitively appealing since it partitioned the functions of an 
oscilloscope into well-defined groupings. Unfortunately it was the wrong model for the 
application domain. The main problem was that the boundaries of abstraction enforced 
by the layers conflicted with the needs for interaction between the various functions. For 
example, the model suggests that all user interactions with an oscilloscope should be in 
terms of the visual representations. But in practice real oscilloscope users need to directly 
affect the functions in all layers, such as setting attenuation in the signal manipulation layer, 
choosing acquisition mode and parameters in the acquisition layer, or creating derived 
waveforms in the waveform manipulation layer. 

A Pipe and Filter Model 

The third attempt yielded a model in which oscilloscope functions were viewed as incremen- 
tal transformers of data. Signal transformers serve to condition external signals. Acquisition 
transformers derive digitized waveforms from these signals. Display transformers convert 
these waveforms into visual data. (See Figure 13.) 

This architectural model was a significant improvement over the layered model in that it 
did not isolate the functions in separate partitions. For example, nothing in this model would 
prevent signal data directly feeding into display filters. Further, the model corresponded 
well to the engineers' view of signal processing as a dataflow problem. 

The main problem with the model was that it was not clear how the user should interact 
with it. If the user were simply at one end of the system, then this would represent an even 
worse decomposition than the layered system. 
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Figure 14: Oscilloscopes - A Modified Pipe and Filter Model 

A Modified Pipe and Filter Model 

The fourth solution accounted for user inputs by associating with each filter a control inter- 
face that allows an external entity to set parameters of operation for the filter. For example, 
the acquisition filter might have parameters that determine sample rate and waveform du- 
ration. These inputs serve as configuration parameters for the oscilloscope. Formally, the 
filters can be modelled as "higher-order" functions, for which the configuration parameters 
determine what data transformation the filter will perform. (See [17] for this interpretation 
of the architecture.) Figure 14 illustrates this architecture. 

The introduction of a control interface solves a large part of the user interface problem. 
First, it provides a collection of settings that determine what aspects of the oscilloscope can 
be modified dynamically by the user. It also explains how changes to oscilloscope function 
can be accomplished by incremental adjustments to the software. Second it decouples the 
signal processing functions of the oscilloscope from the actual user interface: the signal 
processing software makes no assumptions about how the user actually communicates 
changes to its control parameters. Conversely, the actual user interface can treat the signal 
processing functions solely in terms of the control parameters. This allowed the designers 
to change the implementation of the signal processing software and hardware without 
impacting an interface, provided the control interface remained unchanged. 
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Further Specialization 

The adapted pipe and filter model was a great improvement. But it, too, had some problems. 
The most significant problem was that the pipe and filter computational model led to poor 
performance. In particular, waveforms can occupy a large amount of internal storage: it 
is simply not practical for each filter to copy waveforms every time they process them. 
Further, different filters may run at radically different speeds: it is unacceptable to slow one 
filter down because another filter is still processing its data. 

To handle these problems the model was further specialized. Instead of having a single 
kind of pipe, several "colors" of pipes were introduced. Some of these allowed data to 
be processed without copying. Others permitted data to be ignored by slow filters if they 
were in the middle of processing other data. These additional pipes increased the stylistic 
vocabulary and allowed the pipe/filter computations to be tailored more directly to the 
performance needs of the product. 

Summary 

This case study illustrates the issues involved in developing an architectural style for a real 
application domain. It underscores the fact that different architectural styles have different 
effects on the ability to solve a set of problems. Moreover, it illustrates that architectural 
designs for industrial software must typically be adapted from pure forms to specialized 
styles that meet the needs of the specific domain. In this case, the final result depended 
greatly on the properties of pipe and filter architectures, but found ways to adapt that generic 
style so that it could also satisfy the performance needs of the product family. 

4-3.     Case 3: A Fresh View of Compilers 

The architecture of a system can change in response to improvements in technology. This 
can be seen in the way we think about compilers. 

In the 1970's, compilation was regarded as a sequential process, and the organization 
of a compiler was typically drawn as in Figure 15. Text enters at the left end and is 
transformed in a variety of ways - to lexical token stream, parse tree, intermediate code - 
before emerging as machine code on the right. We often refer to this compilation model as 
a pipeline, even though it was (at least originally) closer to a batch sequential architecture 
in which each transformation ("pass") was completed before the next one started. 

In fact, even the batch sequential version of this model was not completely accurate. 
Most compilers created a separate symbol table during lexical analysis and used or updated 
it during subsequent passes. It was not part of the data that flowed from one pass to another 
but rather existed outside all the passes. So the system structure was more properly drawn 
as in Figure 16. 

As time passed, compiler technology grew more sophisticated. The algorithms and 
representations of compilation grew more complex, and increasing attention turned to 
the intermediate representation of the program during compilation. Improved theoretical 
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understanding, such as attribute grammers, accelerated this trend. The consequence was 
that by the mid-1980's the intermediate representation (for example, an attributed parse 
tree), was the center of attention. It was created early during compilation and manipulated 
during the remainder; the data structure might change in detail, but it remained substantially 
one growing structure throughout. However, we continued (sometimes to the present) to 
model the compiler with sequential data flow as in Figure 17. 

In fact, a more appropriate view of this structure would re-direct attention from the 
sequence of passes to the central shared representation. When you declare that the tree is 
the locus of compilation information and the passes define operations on the tree, it becomes 
natural to re-draw the architecture as in Figure 18. Now the connections between passes 
denote control flow, which is a more accurate depiction; the rather stronger connections 
between the passes and the tree/symbol table structure denote data access and manipula- 
tion. In this fashion, the architecture has become a repository, and that is indeed a more 
appropriate way to think about a compiler of this class. 

Happily, this new view also accommodates various tools that operate on the internal 
representation rather than the textual form of a program; these include syntax-directed 
editors and various analysis tools. 

Note that this repository resembles a blackboard in some respects and differs in others. 
Like a blackboard, the information of the computation is located centrally and operated 
on by independent computations which interact only through the shared data. However, 
whereas the execution order of the operations in a blackboard is determined by the types of 
the incoming database modifications, the execution order of the compiler is predetermined. 
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4'4-     Case 4: A. Layered Design with Different Styles for the Layers 

The PRO VOX system by Fisher Controls offers distributed process control for chemical 
production processes [43]. Process control capabilities range from simple control loops that 
control pressure, flow, or levels to complex strategies involving interrelated control loops. 
Provisions are made for integration with plant management and information systems in 
support of computer integrated manufacturing. The system architecture integrates process 
control with plant management and information systems in a 5-level layered hierarchy. 
Figure 19 shows this hierarchy: the right side is the software view, and the left side is the 
hardware view. Each level corresponds to a different process management function with 
its own decision-support requirements. 

• Level 1: Process measurement and control: direct adjustment of final control ele- 
ments. 

• Level 2:  Process supervision: operations console for monitoring and controlling 
Level 1. 

• Level 3: Process management: computer-based plant automation, including man- 
agement reports, optimization strategies, and guidance to operations console. 

• Levels 4 and 5: Plant and corporate management: higher-level functions such as cost 
accounting, inventory control, and order processing/scheduling. 

Different kinds of computation and response times are required at different levels of 
this hierarchy. Accordingly, different computational models are used. Levels 1 to 3 are 
object-oriented; Levels 4 and 5 are largely based on conventional data-processing repository 
models. For present purposes it suffices to examine the object-oriented model of Level 2 
and the repositories of Levels 4 and 5. 

For the control and monitoring functions of Level 2, PROVOX uses a set of points, 
or loci of process control. Figure 20 shows the canonical form of a point definition; 
seven specialized forms support the most common kinds of control.. Points are, in essence, 
object-oriented design elements that encapsulate information about control points of the 
process. The points are individually configured to achieve the desired contrötstrategy. Data 
associated with a point includes: Operating parameters, including current process value, 
setpoint (target value), valve output, and mode (automatic or manual). Tuning parameters, 
such as gain, reset, derivative, and alarm trip-points. Configuration parameters, including 
tag (name) and I/O channels. 

In addition, the point's data can include a template for a control strategy. Like any good 
object, a point also includes procedural definitions such as control algorithms, communica- 
tion connections, reporting services, and trace facilities. A collection of points implements 
the desired process control strategy through the communication services and through the 
actual dynamics of the process (e.g., if one point increases flow into a tank, the current 
value of a point that senses tank level will reflect this change). Although the communica- 
tion through process state deviates from the usual procedural or message-based control of 
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objects, points are conceptually very like objects in their encapsulation of essential state 
and action information. 

Reports from points appear as input transactions to data collection and analysis processes 
at higher design levels. The organization of the points into control processes can be defined 
by the designer to match the process control strategy. These can be further aggregated 
into Plant Process Areas (points related to a set of equipment such as a cooling tower) 
and thence into Plant Management Areas (segments of a plant that would be controlled by 
single operators). 

PROVOX makes provisions for integration with plant management and business sys- 
tems at Levels 4 and 5. Selection of those systems is often independent of process control 
design; PROVOX does not itself provide MIS systems directly but does provide for inte- 
grating a conventional host computer with conventional database management. The data 
collection facilities of Level 3, the reporting facilities of Level 2, and the network that 
supports distributed implementation suffice to provide process information as transactions 
to these databases. Such databases are commonly designed as repositories, with transac- 
tion processing functions supporting a central data store—quite a different style from the 
object-oriented design of Level 2. 

The use of hierarchical layers at the top level of a system is fairly common. This permits 
strong separation of different classes of function and clean interfaces between the layers. 
However, within each layer the interactions among components are often too intricate to 
permit strict layering. 

4.5.     Case 5:   An Interpreter Using Different Idioms for the Compo- 
nents 

Rule-based systems provide a means of codifying the problem-solving know-how of human 
experts. These experts tend to capture problem-solving techniques as sets of situation- 
action rules whose execution or activation is sequenced in response to the conditions of 
the computation rather than by a predetermined scheme. Since these rules are not directly 
executable by available computers, systems for interpreting such rules must be provided. 
Hayes-Roth surveyed the architecture and operation of rule-based systems [44]. 

The basic features of a rule-based system, shown in Hayes-Roth's rendering as Figure 21, 
are essentially the features of a table-driven interpreter, as outlined earlier. 

• The pseudo-code to be executed, in this case the knowledge base 

• The interpretation engine, in this case the rule interpreter, the heart of the inference 
engine 

• The control state of the interpretation engine, in this case the rule and data element 
selector 

• The current state of the program running on the virtual machine, in this case the 
working memory. 
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Knowledge Base 

Figure 21: Basic Rule-Based System 

Rule-based systems make heavy use of pattern matching and context (currently relevant 
rules). Adding special mechanisms for these facilities to the design leads to the more 
complicated view shown in Figure 22. In adding this complexity, the original simple 
interpreter vanishes in a sea of new interactions and data flows. Although the interfaces 
among the original modules remain, they are not distinguished from the newly-added 
interfaces. 

However, the interpreter model can be rediscovered by identifying the components of 
Figure 22 with their design antecedents in Figure 21. This is done in Figure 23. Viewed 
in this way, the elaboration of the design becomes much easier to explain and understand. 
For example, we see that: 

• The knowledge base remains a relatively simple memory structure, merely gaining 
substructure to distinguish active from inactive contents. 

• The rule interpreter is expanded with the interpreter idiom (that is, the interpretation 
engine of the rule-based system is itself implemented as a table-driven interpreter), 
with control procedures playing the role of the pseudo-code to be executed and the 
execution stack the role of the current program state. 

• "Rule and data element selection" is implemented primarily as a pipeline that pro- 
gressively transforms active rules and facts to prioritized activations; in this pipeline 
the third filter ("nominators") also uses a fixed database of metarules. 

• Working memory is not further elaborated. 
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The interfaces among the rediscovered components are unchanged from the simple 
model except for the two bold lines over which the interpreter controls activations. 

This example illustrates two points. First, in a sophisticated rule-based system the 
elements of the simple rule-based system are elaborated in response to execution character- 
istics of the particular class of languages being interpreted. If the design is presented in this 
way, the original concept is retained to guide understanding and later maintenance. Second, 
as the design is elaborated, different components of the simple model can be elaborated 
with different idioms. 

Note that the rule-based model is itself a design structure: it calls for a set of rules 
whose control relations are determined during execution by the state of the computation. A 
rule-based system provides a virtual machine—a rule executor—to support this model. 

4.6.     Case 6: A Blackboard Globally Recast as Interpreter 

The blackboard model of problem solving is a highly structured special case of opportunistic 
problem solving. In this model, the solution space is organized into several application- 
dependent hierarchies and the domain knowledge is partitioned into independent modules 
of knowledge that operate on knowledge within and between levels [34]. Figure 4 showed 
the basic architecture of a blackboard system and outlined its three major parts: knowledge 
sources, the blackboard data structure, and control. 

The first major blackboard system was the HEARSAY-II speech recognition system. 
Nii's schematic of the HEARSAY-II architecture appears as Figure 24. The blackboard 
structure is a six- to eight-level hierarchy in which each level abstracts information on its 
adjacent lower level and blackboard elements rep- resent hypotheses about the interpretation 
of an utterance. Knowledge sources correspond to such tasks as segmenting the raw signal, 
identifying phonemes, generating word candidates, hypothesizing syntactic segments, and 
proposing semantic interpretations. Each knowledge source is organized as a condition part 
that specifies when it is applicable and an action part that processes relevant blackboard 
elements and generates new ones. The control component is realized as a blackboard 
monitor and a scheduler; the scheduler monitors the blackboard and calculates priorities for 
applying the knowledge sources to various elements on the blackboard. 

HEARSAY-II was implemented between 1971 and 1976 on DEC PDP-10s; these ma- 
chines were not directly capable of condition-triggered control, so it should not be surprising 
to find that an implementation provides the mechanisms of a virtual machine that realizes 
the implicit invocation semantics required by the blackboard model. 

Figure 24 not only elaborates the individual components of Figure 4; it also adds com- 
ponents for the previously-implicit control component. In the process, the figure becomes 
rather complex. This complexity arises because it is now illustrating two concepts: the 
blackboard model and realization of that model by a virtual machine. The blackboard 
model can be recovered as in Figure 25 by suppressing the control mechanism and re- 
grouping the conditions and actions into knowledge sources. The virtual machine can be 
seen to be realized by an interpreter using the assignment of function in Figure 26. Here 
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the blackboard cleanly corresponds to the current state of the recognition task. The col- 
lection of knowledge sources roughly supplies the pseudocode of the interpreter; however, 
the actions also contribute to the interpretation engine. The interpretation engine includes 
several components that appear explicitly in Figure 24: the blackboard monitor, the focus 
of control database, and the scheduler, but also the actions of the knowledge sources. The 
scheduling queue corresponds roughly to the control state. To the extent that execution 
of conditions determines priorities, the conditions contribute to rule selection as well as 
forming pseudocode. 

Here we see a system initially designed with one model (blackboard, a special form 
of repository), then realized through a different model (interpreter). The realization is not 
a component-by-component expansion as in the previous two examples; the view as an 
interpreter is a different aggregation of components from the view as blackboard. 
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5.   Past, Present, and Future 

We have outlined a number of architectural styles and shown how they can be applied 
and adapted to specific software systems. We hope that this has convinced the reader 
that analysis and design of systems in terms of software architecture is both viable and 
worth doing. Further we hope to have made it clear that an understanding of the emerging 
vocabulary of architectural styles is a significant—if not necessary—intellectual tool for 
the software engineer. 

There is, of course, much more to software architecture than we have had space to 
cover. In particular, we have said very little about existing results in the areas of analysis, 
formal specification, domain-specific architectures, module interconnection languages, and 
special-architecture tools. 

This is not to say that more work isn't needed. Indeed, we can expect to see significant 
advances in a number of areas including: 

• Better taxonomies of architectures and architectural styles. 

• Formal models for characterizing and analyzing architectures. 

• Better understanding of the primitive semantic entities from which these styles are 
composed. 

• Notations for describing architectural designs. 

• Tools and environments for developing architectural designs. 

• Techniques for extracting architectural information from existing code. 

• Better understanding of the role of architectures in the life-cycle process. 

These are all areas of active research both in industry and academia. Given the increasing 
interest in this emerging field, we can expect that our understanding of the principles and 
practice of software architecture will improve considerably over time. However, as we have 
illustrated, even with the basic concepts that we now have in hand, design at the level of 
software architecture can provide direct and substantial benefit to the practice of software 
engineering. 
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